ON FLOWS OF AN IDEAL GAS WHOSE SONIC SURFACE COINCIDES WITH A CHARACIERISIIC SURFACE

sovendicusmoni s minhicuniscioregror)

PNM Vol.29, 1 4, 1965, pp. 796.797
E.Q. SHIFRIN
(Moscow)
(Received December 18, 1964)

We investigate the rlow of an ideal gas whose sonic surface coinoides with a charaoteristic one (if the flow exists). For brevity, we shall all it an A-flow. In [1] a general condition for A-plows was found, navely, the sonic surface is minimal one. In the present paper, a supplementary, necessary condition for potential A-rlows is presented; in particular, it is not satisfied in the axisymetric case (*).

The theorem of [1]. is deduced from the Bernoulil equations of continuity, of the state $p=p(p, S)$ at the condition of isentropic flow. If n_{2} is the unit velocity vector, then

$$
\begin{equation*}
\operatorname{div}\left(\rho v \mathbf{n}_{1}\right)=\frac{\partial \rho v}{\partial s_{1}}+\rho v \operatorname{div} \mathbf{n}_{1}=0, \quad \frac{\partial}{\partial s_{1}}=\mathbf{n}_{1} \cdot \nabla \tag{1}
\end{equation*}
$$

Since $a(\rho v) / \partial a_{2}=0$ for $v=a$, it follows from (i) that $d i v a_{1}=0$ for $v=a ;$ this is the condition that the surface orthogonal to p_{1} is a minimal one.

Now let us investigate the equation of motion (V. ∇) $\mathrm{V}+\rho^{-1} \nabla p=0$, written in the form [2]

$$
\begin{equation*}
v \frac{\partial v}{\partial s_{1}}+\frac{1}{\rho} \frac{\partial p}{\partial s_{1}}=0, \quad-v^{2} x+\frac{1}{\rho} \frac{\partial p}{\partial s_{2}}=0, \quad \frac{\partial p}{\partial s_{8}}=0 \quad\left(\frac{\partial}{\partial s_{i}}=\mathbf{n}_{i} \cdot \nabla\right) \tag{2}
\end{equation*}
$$

Here n_{n}, m_{n} are unit vectors of the principal normal and the binormal to a streamline, $x \geqslant 0$ is the streamine curvature.

From the second equation of (2) it follows that, if there exists potential A-flow, then atreanlines in the neighborhood of the sonic surface are approximated by straight lines, to scouracy up to third-order small quantities.

We shall determine the class of three-dimensional flows for which this necestary condition can occur.

Introduce into the potential A-flow an oblique syatem of coordinates so that two families u_{a}, u_{3}, are strean surfaces while the u_{1} is orthogonal to otreamines. (the surfaces u_{2} are asavied to be sufficiently smooth.)

[^0]Consider a twice continuously differentiable streamline $r\left(u_{2}\right)$ which intersects the sonic surface. Construct a tetranedral elementary stream tube with constant cross-section area c so that two sides of the tube are defined by the surfaces u_{2} and u_{3}, intersecting on the curve $r\left(u_{1}\right)$, and a third side by the surface $u_{3}+i u_{3}$. Denote by

$$
\frac{1}{H_{3}}=\frac{d u_{9}}{\left|\nabla u_{3}\right|}
$$

the distance on the normal between the surfaces u_{3} and $u_{3}+\pi u_{3}$ along the curve $r\left(u_{1}\right)$; let t be a unit vector defined on the curve $P\left(u_{2}\right)$ and obtained by roteting the vector a_{1} through the angle it in the given direction in the plane whioh is tangent to u_{3}.

The equation of the curve $n\left(u_{1}\right)$, which lies on the surface u_{3} and is the edge of the elementary tube of constant cross section, may be written, with accuracy to quantities of order e^{2}, in the form

$$
\mathbf{R}\left(u_{1}\right)=\mathbf{r}\left(u_{1}\right)+\varepsilon H_{3}\left(u_{1}\right) \mathbf{t}\left(u_{1}\right)
$$

The area of the elementary stream tube has a minimum at the sonic point. Therefore, the streamilne $r\left(u_{1}\right)$ and the streamline which passes through the same point on the sonic surface as does the curve \quad (u^{1}) lie on different sides of $n\left(u_{1}\right)$; the curvature of every streamilne is zero at the sonic point; consequently, it is neceasary that, at the sonic point, the projection of the curve $\boldsymbol{R}\left(u_{1}\right)$ on the tangent plane to the surface u_{3} should not be convex to the streamine $s\left(u_{1}\right)$ for sufficientiy smail ε.

If the unit vector of the curve $R\left(u_{1}\right)$ be denoted by H_{1}, then this condition may be written as follows:

$$
\begin{equation*}
\frac{\partial \mathrm{N}_{\mathrm{I}}}{\partial u_{1}} \cdot t \leqslant 0 \quad \text { for } \quad v=a \tag{3}
\end{equation*}
$$

Denoting a derivative with reapect to u_{1} by a prime, we obtain

$$
\begin{aligned}
& \mathbf{N}_{\mathbf{I}}=\frac{\mathbf{R}^{\prime}}{\left|\mathbf{R}^{\prime}\right|}=\frac{\left|\mathbf{r}^{\prime}\right| \mathbf{n}_{1}+\varepsilon H_{3^{\prime}} t+e H_{3} t^{\prime}}{\left(\left|\mathbf{r}^{\prime}\right|^{2}+\varepsilon^{2} H_{3^{\prime 2}}+\varepsilon^{2} H_{3} \mathbf{t}^{\prime} \cdot \mathbf{t}^{\prime}+2 \varepsilon\left|\mathbf{r}^{\prime}\right| H_{3} \mathbf{n}_{1} \cdot t\right)^{1 / 2}} \\
& \mathbf{N}_{1^{\prime}}^{\prime}=\frac{1}{\left|\mathbf{R}^{\prime}\right|}\left\{\left|\mathbf{r}^{\prime}\right|^{\prime} \mathbf{n}_{1}-\left|\mathbf{r}^{\prime}\right|^{2} x_{\mathbf{n}_{2}}+H_{3^{\prime \prime}} \mathrm{et}+H_{3} \varepsilon \mathrm{t}^{\prime \prime}+2 \varepsilon H_{3^{\prime}} \mathbf{t}^{\prime}-\right.
\end{aligned}
$$

We choose the family u_{1} so that $\left|w^{\prime}\right|^{\prime}=0$ on the line $r\left(u_{1}\right)$ at the sonic point (e.g, we put $u_{1}=\varepsilon_{1}$, where s_{1} is the arc length along the curve $8\left(u_{1}\right)$).

Let γ be the geodesic curvature, δ the relative twist of the curve $r\left(u_{1}\right)$ on the surface u_{3}; then [3] we have

$$
\mathbf{t}^{\prime \prime} \cdot \mathbf{t}=-\mathbf{t}^{\prime} \cdot \mathbf{t}^{\prime}=-\left|\mathbf{r}^{\prime}\right|^{2}\left(\boldsymbol{\gamma}^{2}+\delta^{2}\right)
$$

and condition (3) may be transformed to the form (quantities of order ε^{2} are neglected)

$$
\begin{equation*}
\frac{1}{\left|\nabla u_{3}\right|} \frac{\partial^{2}}{\partial s_{1}^{2}}\left|\nabla u_{3}\right| \leqslant \delta^{2} \quad \text { for } \quad v=a \tag{4}
\end{equation*}
$$

In a potential A-flow, this condition holds for arbitrary choice of the family u_{3}.

If the flow is such that the coordinate system u_{i} may be chosen to be thrice orthogonal (such a system is unique, with acauracy to the order indicated, if the flow is not uniform and rectilinear), then condition (4) for the surfaces u_{a} and u_{3} can be written in the form

$$
\begin{equation*}
\frac{\partial^{2}}{\partial s_{1}^{2}}\left|\nabla u_{i}\right| \leqslant 0 \quad \text { for } \quad v=a \tag{5}
\end{equation*}
$$

In the case of axial symmetry, this condition is not satisfled, as long as the sonic surface is not a plane perpendicular to the axis. In fact, we choose some streamline $y=y(x)$ and determine $u_{1}=x$ on it. With this;

$$
\left|\mathbf{r}^{\prime}\right|^{\prime}=\frac{y^{\prime} y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{1 / 2}}=0 \quad \text { for } \quad v=a, \quad\left|\nabla u_{3}\right|=\frac{1}{y}
$$

and condition (5) will be written in the form

$$
y y^{\prime \prime} \geqslant 2 y^{\prime 2} \quad \text { for } \quad v=a
$$

BIBLIOGRAPHY

1. Ryzhov, O.S. and Shryglevskii, Iu. D., Ob odnom svoistve transzvukovykh techenii gaza (on a certain property of transonic gas flows). PMM Vol.25, Ne 3. 1961.
2. Bruhn, G. and Haack, W., Ein Charakteristikenverfahren für dreidimensionale instationäre Gasströmungen. Z. angew.Math. Phys., 9b, M 5-6, 1958.
3. Lagally, M., Vector Analysis, (Russian translation, Gostekhizdat, 1936).

[^0]: *) The fact that A-flows cansot exist in the axisymetrio onse was pointed out to the author by Iu.D.shngelevekil (In searohing for a solution of the Cauchy problem in the neighborhood of the sonic line in the form of a power series, the coefficients turned out to be imaginary).

